3.4 \(\int \sqrt{e \cot (c+d x)} (a+a \cot (c+d x)) \, dx\)

Optimal. Leaf size=71 \[ \frac{\sqrt{2} a \sqrt{e} \tanh ^{-1}\left (\frac{\sqrt{e} \cot (c+d x)+\sqrt{e}}{\sqrt{2} \sqrt{e \cot (c+d x)}}\right )}{d}-\frac{2 a \sqrt{e \cot (c+d x)}}{d} \]

[Out]

(Sqrt[2]*a*Sqrt[e]*ArcTanh[(Sqrt[e] + Sqrt[e]*Cot[c + d*x])/(Sqrt[2]*Sqrt[e*Cot[c + d*x]])])/d - (2*a*Sqrt[e*C
ot[c + d*x]])/d

________________________________________________________________________________________

Rubi [A]  time = 0.0778965, antiderivative size = 71, normalized size of antiderivative = 1., number of steps used = 3, number of rules used = 3, integrand size = 23, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.13, Rules used = {3528, 3532, 208} \[ \frac{\sqrt{2} a \sqrt{e} \tanh ^{-1}\left (\frac{\sqrt{e} \cot (c+d x)+\sqrt{e}}{\sqrt{2} \sqrt{e \cot (c+d x)}}\right )}{d}-\frac{2 a \sqrt{e \cot (c+d x)}}{d} \]

Antiderivative was successfully verified.

[In]

Int[Sqrt[e*Cot[c + d*x]]*(a + a*Cot[c + d*x]),x]

[Out]

(Sqrt[2]*a*Sqrt[e]*ArcTanh[(Sqrt[e] + Sqrt[e]*Cot[c + d*x])/(Sqrt[2]*Sqrt[e*Cot[c + d*x]])])/d - (2*a*Sqrt[e*C
ot[c + d*x]])/d

Rule 3528

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)]), x_Symbol] :> Simp[(d
*(a + b*Tan[e + f*x])^m)/(f*m), x] + Int[(a + b*Tan[e + f*x])^(m - 1)*Simp[a*c - b*d + (b*c + a*d)*Tan[e + f*x
], x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && GtQ[m, 0]

Rule 3532

Int[((c_) + (d_.)*tan[(e_.) + (f_.)*(x_)])/Sqrt[(b_.)*tan[(e_.) + (f_.)*(x_)]], x_Symbol] :> Dist[(-2*d^2)/f,
Subst[Int[1/(2*c*d + b*x^2), x], x, (c - d*Tan[e + f*x])/Sqrt[b*Tan[e + f*x]]], x] /; FreeQ[{b, c, d, e, f}, x
] && EqQ[c^2 - d^2, 0]

Rule 208

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-(a/b), 2]*ArcTanh[x/Rt[-(a/b), 2]])/a, x] /; FreeQ[{a,
b}, x] && NegQ[a/b]

Rubi steps

\begin{align*} \int \sqrt{e \cot (c+d x)} (a+a \cot (c+d x)) \, dx &=-\frac{2 a \sqrt{e \cot (c+d x)}}{d}+\int \frac{-a e+a e \cot (c+d x)}{\sqrt{e \cot (c+d x)}} \, dx\\ &=-\frac{2 a \sqrt{e \cot (c+d x)}}{d}-\frac{\left (2 a^2 e^2\right ) \operatorname{Subst}\left (\int \frac{1}{2 a^2 e^2-e x^2} \, dx,x,\frac{-a e-a e \cot (c+d x)}{\sqrt{e \cot (c+d x)}}\right )}{d}\\ &=\frac{\sqrt{2} a \sqrt{e} \tanh ^{-1}\left (\frac{\sqrt{e}+\sqrt{e} \cot (c+d x)}{\sqrt{2} \sqrt{e \cot (c+d x)}}\right )}{d}-\frac{2 a \sqrt{e \cot (c+d x)}}{d}\\ \end{align*}

Mathematica [C]  time = 0.2826, size = 154, normalized size = 2.17 \[ -\frac{a \sqrt{e \cot (c+d x)} \left (8 \text{Hypergeometric2F1}\left (-\frac{1}{4},1,\frac{3}{4},-\tan ^2(c+d x)\right )+\sqrt{2} \sqrt{\tan (c+d x)} \left (2 \tan ^{-1}\left (1-\sqrt{2} \sqrt{\tan (c+d x)}\right )-2 \tan ^{-1}\left (\sqrt{2} \sqrt{\tan (c+d x)}+1\right )+\log \left (\tan (c+d x)-\sqrt{2} \sqrt{\tan (c+d x)}+1\right )-\log \left (\tan (c+d x)+\sqrt{2} \sqrt{\tan (c+d x)}+1\right )\right )\right )}{4 d} \]

Antiderivative was successfully verified.

[In]

Integrate[Sqrt[e*Cot[c + d*x]]*(a + a*Cot[c + d*x]),x]

[Out]

-(a*Sqrt[e*Cot[c + d*x]]*(8*Hypergeometric2F1[-1/4, 1, 3/4, -Tan[c + d*x]^2] + Sqrt[2]*(2*ArcTan[1 - Sqrt[2]*S
qrt[Tan[c + d*x]]] - 2*ArcTan[1 + Sqrt[2]*Sqrt[Tan[c + d*x]]] + Log[1 - Sqrt[2]*Sqrt[Tan[c + d*x]] + Tan[c + d
*x]] - Log[1 + Sqrt[2]*Sqrt[Tan[c + d*x]] + Tan[c + d*x]])*Sqrt[Tan[c + d*x]]))/(4*d)

________________________________________________________________________________________

Maple [B]  time = 0.018, size = 337, normalized size = 4.8 \begin{align*} -2\,{\frac{a\sqrt{e\cot \left ( dx+c \right ) }}{d}}+{\frac{a\sqrt{2}}{4\,d}\sqrt [4]{{e}^{2}}\ln \left ({ \left ( e\cot \left ( dx+c \right ) +\sqrt [4]{{e}^{2}}\sqrt{e\cot \left ( dx+c \right ) }\sqrt{2}+\sqrt{{e}^{2}} \right ) \left ( e\cot \left ( dx+c \right ) -\sqrt [4]{{e}^{2}}\sqrt{e\cot \left ( dx+c \right ) }\sqrt{2}+\sqrt{{e}^{2}} \right ) ^{-1}} \right ) }+{\frac{a\sqrt{2}}{2\,d}\sqrt [4]{{e}^{2}}\arctan \left ({\sqrt{2}\sqrt{e\cot \left ( dx+c \right ) }{\frac{1}{\sqrt [4]{{e}^{2}}}}}+1 \right ) }-{\frac{a\sqrt{2}}{2\,d}\sqrt [4]{{e}^{2}}\arctan \left ( -{\sqrt{2}\sqrt{e\cot \left ( dx+c \right ) }{\frac{1}{\sqrt [4]{{e}^{2}}}}}+1 \right ) }-{\frac{ae\sqrt{2}}{4\,d}\ln \left ({ \left ( e\cot \left ( dx+c \right ) -\sqrt [4]{{e}^{2}}\sqrt{e\cot \left ( dx+c \right ) }\sqrt{2}+\sqrt{{e}^{2}} \right ) \left ( e\cot \left ( dx+c \right ) +\sqrt [4]{{e}^{2}}\sqrt{e\cot \left ( dx+c \right ) }\sqrt{2}+\sqrt{{e}^{2}} \right ) ^{-1}} \right ){\frac{1}{\sqrt [4]{{e}^{2}}}}}-{\frac{ae\sqrt{2}}{2\,d}\arctan \left ({\sqrt{2}\sqrt{e\cot \left ( dx+c \right ) }{\frac{1}{\sqrt [4]{{e}^{2}}}}}+1 \right ){\frac{1}{\sqrt [4]{{e}^{2}}}}}+{\frac{ae\sqrt{2}}{2\,d}\arctan \left ( -{\sqrt{2}\sqrt{e\cot \left ( dx+c \right ) }{\frac{1}{\sqrt [4]{{e}^{2}}}}}+1 \right ){\frac{1}{\sqrt [4]{{e}^{2}}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((e*cot(d*x+c))^(1/2)*(a+a*cot(d*x+c)),x)

[Out]

-2*a*(e*cot(d*x+c))^(1/2)/d+1/4/d*a*(e^2)^(1/4)*2^(1/2)*ln((e*cot(d*x+c)+(e^2)^(1/4)*(e*cot(d*x+c))^(1/2)*2^(1
/2)+(e^2)^(1/2))/(e*cot(d*x+c)-(e^2)^(1/4)*(e*cot(d*x+c))^(1/2)*2^(1/2)+(e^2)^(1/2)))+1/2/d*a*(e^2)^(1/4)*2^(1
/2)*arctan(2^(1/2)/(e^2)^(1/4)*(e*cot(d*x+c))^(1/2)+1)-1/2/d*a*(e^2)^(1/4)*2^(1/2)*arctan(-2^(1/2)/(e^2)^(1/4)
*(e*cot(d*x+c))^(1/2)+1)-1/4/d*a*e/(e^2)^(1/4)*2^(1/2)*ln((e*cot(d*x+c)-(e^2)^(1/4)*(e*cot(d*x+c))^(1/2)*2^(1/
2)+(e^2)^(1/2))/(e*cot(d*x+c)+(e^2)^(1/4)*(e*cot(d*x+c))^(1/2)*2^(1/2)+(e^2)^(1/2)))-1/2/d*a*e/(e^2)^(1/4)*2^(
1/2)*arctan(2^(1/2)/(e^2)^(1/4)*(e*cot(d*x+c))^(1/2)+1)+1/2/d*a*e/(e^2)^(1/4)*2^(1/2)*arctan(-2^(1/2)/(e^2)^(1
/4)*(e*cot(d*x+c))^(1/2)+1)

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*cot(d*x+c))^(1/2)*(a+a*cot(d*x+c)),x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [B]  time = 2.00507, size = 603, normalized size = 8.49 \begin{align*} \left [\frac{\sqrt{2} a \sqrt{e} \log \left (-\sqrt{2} \sqrt{e} \sqrt{\frac{e \cos \left (2 \, d x + 2 \, c\right ) + e}{\sin \left (2 \, d x + 2 \, c\right )}}{\left (\cos \left (2 \, d x + 2 \, c\right ) - \sin \left (2 \, d x + 2 \, c\right ) - 1\right )} + 2 \, e \sin \left (2 \, d x + 2 \, c\right ) + e\right ) - 4 \, a \sqrt{\frac{e \cos \left (2 \, d x + 2 \, c\right ) + e}{\sin \left (2 \, d x + 2 \, c\right )}}}{2 \, d}, -\frac{\sqrt{2} a \sqrt{-e} \arctan \left (\frac{\sqrt{2} \sqrt{-e} \sqrt{\frac{e \cos \left (2 \, d x + 2 \, c\right ) + e}{\sin \left (2 \, d x + 2 \, c\right )}}{\left (\cos \left (2 \, d x + 2 \, c\right ) + \sin \left (2 \, d x + 2 \, c\right ) + 1\right )}}{2 \,{\left (e \cos \left (2 \, d x + 2 \, c\right ) + e\right )}}\right ) + 2 \, a \sqrt{\frac{e \cos \left (2 \, d x + 2 \, c\right ) + e}{\sin \left (2 \, d x + 2 \, c\right )}}}{d}\right ] \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*cot(d*x+c))^(1/2)*(a+a*cot(d*x+c)),x, algorithm="fricas")

[Out]

[1/2*(sqrt(2)*a*sqrt(e)*log(-sqrt(2)*sqrt(e)*sqrt((e*cos(2*d*x + 2*c) + e)/sin(2*d*x + 2*c))*(cos(2*d*x + 2*c)
 - sin(2*d*x + 2*c) - 1) + 2*e*sin(2*d*x + 2*c) + e) - 4*a*sqrt((e*cos(2*d*x + 2*c) + e)/sin(2*d*x + 2*c)))/d,
 -(sqrt(2)*a*sqrt(-e)*arctan(1/2*sqrt(2)*sqrt(-e)*sqrt((e*cos(2*d*x + 2*c) + e)/sin(2*d*x + 2*c))*(cos(2*d*x +
 2*c) + sin(2*d*x + 2*c) + 1)/(e*cos(2*d*x + 2*c) + e)) + 2*a*sqrt((e*cos(2*d*x + 2*c) + e)/sin(2*d*x + 2*c)))
/d]

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} a \left (\int \sqrt{e \cot{\left (c + d x \right )}}\, dx + \int \sqrt{e \cot{\left (c + d x \right )}} \cot{\left (c + d x \right )}\, dx\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*cot(d*x+c))**(1/2)*(a+a*cot(d*x+c)),x)

[Out]

a*(Integral(sqrt(e*cot(c + d*x)), x) + Integral(sqrt(e*cot(c + d*x))*cot(c + d*x), x))

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int{\left (a \cot \left (d x + c\right ) + a\right )} \sqrt{e \cot \left (d x + c\right )}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*cot(d*x+c))^(1/2)*(a+a*cot(d*x+c)),x, algorithm="giac")

[Out]

integrate((a*cot(d*x + c) + a)*sqrt(e*cot(d*x + c)), x)